
Test your CSS/Sass with the Chrome Developer Tools

Ben Frain

1

@benfrain / http://benfrain.com

Who is this guy?

Author of:

• ‘Responsive web design with HTML5 and CSS3’

• ‘Sass and Compass for Designers’

Front-end developer at bet365.com

2

http://benfrain.com
http://benfrain.com
http://www.spiralfilm.com/
http://www.spiralfilm.com/

@benfrain / http://benfrain.com

Disclosure

• No affiliation with Google.

• I find Chrome Developer Tools easiest to work with.

• Chrome developer relations team document new
features well.

• My list of Dev Tool Resources: https://gist.github.com/
benfrain/5908652

3

http://benfrain.com
http://benfrain.com
https://gist.github.com/benfrain/5908652
https://gist.github.com/benfrain/5908652
https://gist.github.com/benfrain/5908652
https://gist.github.com/benfrain/5908652

@benfrain / http://benfrain.com

Who this is for

• People comfortable with HTML and CSS/Sass

• To help you troubleshoot style sheet problems more
easily.

• We will cover Developer Tools basics

• Then we’ll cover the CSS specific troubleshooting
features.

• Time permitting, I’ll share my screen and use them live.

4

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Orientation/Dev Tool Essentials

• Selecting with the magnifying glass

• Moving nodes/viewing hierarchy

• Editing nodes

• Moving the Dev Tools

• Styles panel – adding styles

• Computed style of an element

• Toggling the pseudo state (hover/active) of elements

5

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

CSS specific tasks with Chrome Developer Tools

• ‘Rule Rot’; how to find out which rules are being used.

• Invalid CSS properties or values.

• How ‘performant’ is your CSS?

• Costly property combinations?

• Cutting out round-trips to the text editor.

• [Non Chrome] – configuring and using CSS Lint

6

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Every browser is different!

• Every browser interprets and paints CSS differently.

• Pages that perform well in Chrome, may perform

differently in other browsers.

• However, doing some (any) testing of your CSS is

better than none.

Caveats over. Let’s begin.
7

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Invoking the Developer Tools

• Right/cmd-click an element and click ‘Inspect Element’

• Or choose View, Developer, Developer Tools from the

main menu

• Use the shortcut key assigned

8

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Positioning the Chrome Dev Tools: bottom, right or
floating

• You can always drag them back.

• Switch positions by simply clicking

and holding the view button:

• Drag the Dev Tools header to the right for trouble shooting

slimmer viewports.

9

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Selecting elements on the page

• Inspect by clicking a node in the Elements panel

• Or use the magnifying glass (bottom left) and hover your
mouse over the relevant area.

i ‘Nodes’ is just the term for elements within the DOM (Document Object
Model) – a.k.a. the hierarchy of elements in the web page.

10

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Expanding the DOM tree (Elements panel)

• Nodes that contains other nodes have a disclosure
triangle. Click to, errr disclose them!

• ‘Leaf’ nodes lack a disclosure triangle.

• A hierarchical path of the
current node is displayed
at the bottom.

11

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

How to move/edit/delete nodes

• Nodes can be moved, edited and deleted. Chrome will
show the results instantly.

• To move a node, click and hold the disclosure triangle
and drag.

12

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Editing a node

• Edit a node by double-clicking the attribute you want to
edit. Amend it and then press Tab.

• Changes update instantly.

13

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Add attributes to a node

• Add attributes by moving to the start/end of existing
attribute:

14

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Delete a node

• Delete a node by right-clicking on an element and
choosing ‘Delete Node’ from the contextual menu:

15

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Toggling visibility of a node

• With a node selected simply press ‘H’.

• This adds the class ‘web-inspector-hide-shortcut’ to the
element.

i Toggling visibility is not equivalent to display: none; – it retains it’s
physical space and toggles visible styles.

16

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Using the styles panel

• Styles panel provides direct access to the CSS rules being
applied.

• Edit existing properties, add new ones and even save the
values you amend directly back to the source Sass/CSS
files.

17

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Editing existing styles and adding new ones

• Styles applied to an element show in the styles panel on
the right

• ‘Computed styles’ are what the browser has interpreted
the CSS to mean.

• Useful for comparing what you think should be applied
and what the browser is actually applying!

18

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

The Styles section

• ‘Styles’ section adds inline rules. Adding styles there is similar to
injecting styles with JavaScript.

• Styles header has extra buttons:

• ‘New Style Rule’ button adds a new rule into a Web Inspector stylesheet (as
opposed to inline on the element).

• ‘Toggle element states’ button (hover, active, visited and focus).

• ‘Settings’ button toggles how colour values are displayed (RGB/HEX/HSL).

19

@benfrain / http://benfrain.com

‘Matched CSS Rules’ section

• ‘Matched CSS Rules’ includes rules from any stylesheets.

• Rules overwritten via specificity have a line through.

• Toggle individual properties with the tick box to the side.

i Commented out CSS rules in the source Sass/CSS show with a line
through and are unselected.

20

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Manipulating values

• Double-click a value to edit it.

• Increment numeric values with up and down keys (hold
shift to increment in 10s, hold alt to increment in .1s).

• To add a new property, click to the right of the closing
curly brace.

• Chrome auto-completes CSS properties and values –
handy when you can’t remember the correct value.

21

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Source location

• The ‘Matched CSS Rules’ section indicates where a rule originates.
Click to open the source style sheet in the Sources tab.

• Working with Sass (*cough* buy my book ‘Sass and Compass
for Designers’ *cough*)? With source map support enabled
originating partial file is displayed.

• Clicking the Sass partial name opens it in the Source panel. From
there you can edit it directly and save it back to the source
Sass files.

22

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Essentials Section Summary

•That was not exhaustive

•But we’ve covered enough to crack on with the Sass/CSS
specific testing we need to do.

•Pull on your starched white lab coat.

23

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Chrome Release Channels
(left to right: Stable, Dev, Canary)

• Different release ‘channels’: Stable, Beta, Dev and Canary.

• Stable is for ‘muggles’.

• Beta not much different.

• Dev contains good mix of stability and experimental features.

• Canary is full of dark arts (I heard a rumour it’s built purely from Horcruxes and crow
spit).

• Canary will live happily alongside another Chrome.

• Get them here: http://www.chromium.org/getting-
involved/dev-channel

24

http://benfrain.com
http://benfrain.com
http://www.chromium.org/getting-involved/dev-channel
http://www.chromium.org/getting-involved/dev-channel
http://www.chromium.org/getting-involved/dev-channel
http://www.chromium.org/getting-involved/dev-channel

@benfrain / http://benfrain.com

Dealing with ‘Rule Rot’.

• What part(s) of your CSS are being used?

• Open Dev Tools. Switch to the Profiles panel. Select the
‘Collect CSS Selector Profile’ option.

• Click the Start button. The circle will go red to indicate
recording has started.

25

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

About profile recordings

• As the site is browsed each selector is counted and
measured.

• Click around whilst Chrome records to invoke every style.

• Activate buttons and states. When all pages are viewed,
click the stop/record button.

• If you screw up. Just select the profile on the left and click
‘Clear all profiles’ button. Then start again.

• Once you have a profile recorded, select it over on the left:
26

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Profile results table

You’ll be presented by a four column table. The columns:

• Selector – the CSS selector in question

• Source – where the rule originated (handy if multiple
stylesheets)

• Total – how long did it take, in percentage terms to select

• Matches – how many times was the selector matched

What are we looking for?

27

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Interpreting the Profile data

We’re looking for low-hanging fruit; rules in our
stylesheets that aren’t used.

! Don’t forget this information is only based upon styles that were used (or
not) whilst this profile was being recorded

28

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Pro tip: Export to Excel

It’s easy to get the profile data into Excel

• Select the contents (e.g. command+A on the Mac) and copy.

• Paste contents into Excel.

• Have nothing better to do? Make a chart or one of those
pivot things I don’t understand!

29

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Testing the performance of your styles

• Long held beliefs regarding performance

• Whilst many hold true, they may be of negligible
importance on YOUR site.

• Use these tools to replace conjecture with data.

• Make choices based on empirical facts, not generalisations.

• For trouble-shooting CSS performance, my favourite two
features are ‘Show paint rectangles’ and ‘Enable
continuous page repainting’.

30

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Continuous page repainting

• Click the cog (bottom right). Under the
General section, enable ‘Continuous
page repainting’.

• The small graph (top right), shows paint
time of the current viewport (in ms).

• The rolling graph shows previous
paints. The line indicates a 16ms
threshold. Something on desktop that
has a paint time of 16ms+ could struggle
on lower powered devices (e.g. mobile).

• The aim is to reduce the paint time.
31

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

What causes expensive paint times?

• ‘Expensive’ styles can come from surprising places.

• Luckily, Dev Tools make it easy to toggle styles in the
styles panel, or visually hide an element by pressing ‘H’.

• Example: http://www.apple.com/iphone/ios/ – scroll
down to this section (24ms paint time):

32

http://benfrain.com
http://benfrain.com
http://www.apple.com/iphone/ios/
http://www.apple.com/iphone/ios/

@benfrain / http://benfrain.com

Expensive paint times (continued)

• That element has a 24ms paint time. What’s causing it?

• Images? Fancy text? Nope, a CSS inset box-shadow.

• Removing the box-shadow makes little difference to the
visuals but an enormous difference to the paint time
(down to 8.6ms).

33

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Continuous page repainting conclusion

• Continuous page repainting let’s you easily find problem
styles. Real data on which to make performance decisions for
your own site

• Note: selectors, technically, have zero effect on paint time.
Therefore when looking at paint time, consider properties
and values, not selectors (plus selectors are very fast anyway).

In modern browsers, I’d argue
that in many cases
performance is within the
braces, architecture is outside:

34

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Show paint rectangles

• ‘Show paint rectangles’ displays the areas of a page being
‘repainted’ as you interact with it.

• Here is how you enable it:

• ‘Painting’ means what you
expect. As the browser
interprets the data (e.g.
HTML, CSS, JS) it
composites the design to the
screen as a series of ‘tiles’.

• If nothing changes, there are likely few page repaints. That
means better performance.

35

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Paint rectangles (example)

• Let’s look at an example (sorry Apple): http://store.apple.com/us

• Red rectangles flash in certain areas as the page is scrolled.

• These are the areas being repainted by Chrome.

36

http://benfrain.com
http://benfrain.com
http://store.apple.com/us
http://store.apple.com/us

@benfrain / http://benfrain.com

Paint rectangles (cont.)

• Switch off properties to see how it effects painting.

• In our example, the paint on scroll was caused by a hover
state.

• Perhaps not a problem in itself but this also occurs as the page
is scrolled (when perhaps those hover states are unneeded).

• Very common scenario and with easy to implement
workarounds.

• A great post on paint times: http://www.html5rocks.com/en/
tutorials/speed/unnecessary-paints/

37

http://benfrain.com
http://benfrain.com
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/

@benfrain / http://benfrain.com

Resource bloat and asset encoding

• Find out what assets (scripts, stylesheets, images) a page is loading.

• Details how many separate requests (number of files downloaded)
and their size.

• Let’s have a look at another Apple page: http://www.apple.com/
ipad/

• Switch to the Network panel and refresh.

• There’s a long list of assets. Scroll to the bottom and you’ll see the
totals in a grey bar. In this instance: 133 requests ❘ 4.4 MB
transferred ❘ 5.06 s (load: 1.79 s, DOMContentLoaded: 1.37 s).

38

http://benfrain.com
http://benfrain.com
http://www.apple.com/ipad/
http://www.apple.com/ipad/
http://www.apple.com/ipad/
http://www.apple.com/ipad/

@benfrain / http://benfrain.com

Concatenate CSS and convert assets to Data URIs

• Use the column headers to sort the assets

• ‘Type’ allows us to sort by CSS files.

• Could files be combined to minimise the number of requests
(for style sheets, if using Sass this is obviously trivial)?

• Could smaller image assets be converted into data URIs (use
Compass alongside Sass for easy conversion) to further
minimise requests?

• Thinking of Data URIs for mobile? This is worth a read:
http://www.mobify.com/blog/data-uris-are-slow-on-mobile/

39

http://benfrain.com
http://benfrain.com
http://sassandcompass.com/chapter7/
http://sassandcompass.com/chapter7/
http://sassandcompass.com/chapter7/
http://sassandcompass.com/chapter7/
http://www.spiralfilm.com/
http://www.spiralfilm.com/

@benfrain / http://benfrain.com

Compression of assets

• Are assets being served ‘gzipped’?

• Command/right-click the headers area and tick the ‘Content-
Encoding’ option.

• This column indicates which assets were sent gzipped.

• If none, it’s time to look at how you can make that happen.

• Most servers use Apache. The HTML5 Boilerplate project has
a great .htaccess file that typically makes gzipping happen
automagically: https://raw.github.com/h5bp/html5-
boilerplate/master/.htaccess

40

http://benfrain.com
http://benfrain.com
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess
https://raw.github.com/h5bp/html5-boilerplate/master/.htaccess

@benfrain / http://benfrain.com

Dev Tools for CSS performance summary

• If you’ve never used the Dev Tools to look at the
performance of your CSS/Sass, hopefully this has given
you some ideas.

• OK, so that’s CSS performance, what about CSS quality?

• Chrome can help here too and we’ll also take a look at
CSS Lint, a (sometimes maligned) tool that can quality
check (to a degree) your CSS.

41

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

CSS code quality checks with Chrome Dev Tools

• Switch to the Console tab.

• CSS errors and warnings are shown for the page.

• If you just want to see CSS errors, use the Filter button:

42

http://benfrain.com
http://benfrain.com

CSS Lint (nothing to do with Chrome)

• CSS Lint automates CSS quality against a number of pre-defined tests.

• It’s a configurable tool that can flag up common CSS authoring faux pas.

• Paste your CSS into the big empty box and then click the big down arrow to
configure (or get a plugin for your editor e.g. https://github.com/
SublimeLinter/SublimeLinter):

43

http://csslint.net/
http://csslint.net/
https://github.com/SublimeLinter/SublimeLinter
https://github.com/SublimeLinter/SublimeLinter
https://github.com/SublimeLinter/SublimeLinter
https://github.com/SublimeLinter/SublimeLinter

@benfrain / http://benfrain.com

CSS Lint configuration

• Remember it’s configurable. Decide what you would like
checking.

• Typical examples: it can spot an un-needed float
alongside display: inline-block; (which has no
affect).

• Conversely I don’t give a monkeys about ‘Avoiding un-
anchored hovers’ (as it generally only affects IE7 badly).

• Think of it as a final sanity check before pushing CSS code
live.

44

http://benfrain.com
http://benfrain.com

@benfrain / http://benfrain.com

Chrome Dev Tools Voodoo (saving back to source)

• Chrome can save amendments made in the Developer Tools
back to the source Sass/CSS files.

• This prevents round-trips to the editor and saves lots of time.

• Command-click a property or value and the relevant file
opens in the Sources tab. Edit the value and command+S
saves the file - changes are reloaded straight into the
browser.

• Set-up is a little involved so interested parties should head
here: http://benfra.in/1z1 for a walkthrough.

45

http://benfrain.com
http://benfrain.com
http://benfra.in/1z1
http://benfra.in/1z1

@benfrain / http://benfrain.com

Conclusion

• We’ve covered a LOT of ground. Thanks for staying with me.

• Remember, a list of useful videos/posts on using the
Chrome Dev Tools here: https://gist.github.com/benfrain/
5908652

Thank you for your attention.

Any questions?

46

http://benfrain.com
http://benfrain.com
https://gist.github.com/benfrain/5908652
https://gist.github.com/benfrain/5908652
https://gist.github.com/benfrain/5908652
https://gist.github.com/benfrain/5908652

